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Abstract

One common observation from financial data is a negative relationship between returns

and volatility known as a leverage effect. This paper develops an affine discrete-time option

pricing model accommodating the leverage effect. We use the general framework of discrete-

time affine models by Darolles et al. (2006) for modeling a bivariate process of returns and

stochastic volatility (SV). This allows us to share the same advantage of analytical tractability

as affine continuous-time models, that is closed-form option pricing formulas, while discrete-

time modeling provides a better empirical fit of higher order moments of asset returns. We

exploit information in high-frequency data as summarized by realized variance (RV) which

produces dynamics of RV as a SV-type extension of traditional high-frequency-based volatility

(HEAVY) models by Shephard and Sheppard (2010) that are of the GARCH type. Such a SV-

type extension allows the model to be robust under temporal aggregation as well as to provide

option pricing formulas that are homogeneous of degree one with respect to the underlying

stock and strike prices. Moreover, the leverage effect is characterized through a time invariant

correlation coefficient between returns and SV that is similar to popular modeling in continuous-

time models. This enables us to see how the leverage effect affects volatility smile. We use

GMM with a large number of moment conditions for estimation and we can provide analytical

identification conditions thanks to the affine structure. An empirical illustration is provided

with the returns and options data of the S&P500 index.
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1 Introduction

Since Duffie, Pan, and Singleton (2000), Affine Jump-Diffusion (AJD) models have been popular

for derivative pricing. AJD models are continuous-time models and nest in particular the Cox,

Ingersoll, and Ross (1985) model for interest rates and the affine stochastic volatility (SV) model

for currency and equity returns proposed by Heston (1993) for the case of option pricing. The main

advantage of AJD models is their analytical tractability. Duffie et al. (2000) show the existence of

semi-closed form expressions for derivative prices through the use of Fourier transform.

While AJD models have their advantages, discrete-time models have attracted attention in deriva-

tive pricing as well. Skewness and excess kurtosis of asset returns are commonly observed in financial

time series. However, up to jumps, the AJD models’ ability to reproduce higher order moments is

limited by the maintained assumption of conditional normality. This is the reason why discrete-time

models provide an additional degree of freedom that leads to a better empirical fit of such higher

order moments. The fact that only discrete observations are often available for empirical study has

also promoted the development of discrete-time modeling. One such class of discrete-time models

is GARCH option pricing models that give closed-form pricing formulas (Duan (1995), Heston and

Nandi (2000), Christoffersen et al. (2010, 2012)). Another strand of literature that is of interest to

this paper concerns a class of discrete-time affine SV models (Darolles et al. (2006)).

This paper develops an affine discrete-time SV option pricing model incorporating the leverage

effect, a negative relationship between returns and volatility. We use the general framework of

compound autoregressive processes (CAR) of Darolles et al. (2006) for modeling a bivariate process

of returns and volatility. With an exponentially affine stochastic discount factor, the CAR framework

has the structure-preserving property, meaning that the historical and risk neutral measures share

the same dynamics with possibly different parameters. This provides a convenient framework for

option pricing since the affine property is maintained under the risk-neutral dynamics which enables

us to compute option prices in closed-form.

The stochastic volatility factor is unobservable. We exploit the information in high-frequency

data as summarized by “realized variance”, which is constructed from intraday price movements,

for identification of the latent volatility factor. The model developed in this paper provides dynam-

ics of realized variance that are closely related to linear high-frequency-based volatility (HEAVY)

models by Shephard and Sheppard (2010)1. For this reason, we dub this model a “HEAVY-SV”

model.

The HEAVY-SV model enhances traditional HEAVY models that are of the GARCH type. The

HEAVY models that Shephard and Sheppard (2010) focus on have AR(1) dynamics of the conditional

mean of realized variance that is of the GARCH(1,1) type. We use a general AR(1) model for the

1HEAVY models are predictive models of daily asset returns volatility based on realized measures constructed
from high-frequency data. Realized variance is one particular example of realized measures.
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conditional mean which encompasses the HEAVY models. More specifically, we add another source

of randomness to the HEAVY models by considering SV. In the same way that Meddahi and Renault

(2004) have pointed out that affine SV models are an extension of GARCH models, the HEAVY-

SV model can be seen as a SV-type extension of the HEAVY models. Due to this extension, the

HEAVY-SV model is robust under temporal aggregation2, which underpins the continuous-time

limit of this model.

In addition, with the assumption of no Granger causality from returns to volatility, we get option

pricing formulas that are homogeneous of degree one (as in the Black and Scholes case) with respect

to the underlying stock and strike prices. This homogeneity property is desirable because it ensures

that option prices are convex with respect to underlying asset prices, which is consistent with actual

data (Garcia an Renault, 1998). This homogeneity property also allows the volatility smile to be

a function of moneyness 3 only. GARCH option pricing models lack such a homogeneity property

(Garcia and Renault, 1998).

A well-documented feature of financial time series is the leverage effect: there tends to be a

negative relationship between returns and volatility. Typically, rising asset prices are accompanied

by declining volatility, and vice versa. In continuous-time models, the leverage effect is characterized

through an instantaneous correlation coefficient (e.g. Heston, 1993). We introduce the leverage

effect as a time-invariant correlation coefficient between the contemporary returns and volatility

as in continuous-time models. This allows us to see how the shape of volatility smile is affected

by the leverage effect (see Khrapov and Renault, 20164, for detail). However, as discussed by

Bollerslev et al. (2006), it is hard to distinguish the leverage effect from volatility feedback effect in

discrete-time. The fundamental difference between those two effects lies in the direction of causality5

between volatility and returns but the discrete-time approach complicates the separate identification

of those causalities (see Renault et al., 1998). While Bollerslev et al. (2006) enhance the usefulness

of high-frequency data to separate a leverage effect and a volatility feedback effect, we impose a

parameterization leaving room for both effects simultaneously.

This paper also addresses a practical identification issue that can arise with the application of

the HEAVY-SV model. CAR models characterize the dynamics of returns and volatility through

conditional Laplace transforms. This provides us with a continuum set of closed-form conditional

moment restrictions that identify parameters. One commonly used estimation method is to choose

instruments that are functions of conditioning variables and construct unconditional moments from

conditional moments with them. However, as discussed in Dominguez and Lobato (2004) and Hsu

2In general, we say that a model is closed under temporal aggregation if the model keeps the same structure for
any data frequency.

3Moneyness is defined as the percentage xt = log(St/K) where St and K denote the underlying asset price at time
t and the strike price of an option.

4They show explicitly how volatility smile is distorted with the leverage effect.
5The direction of causality for volatility feedback effect is from volatility to returns (Bollerslev et al., 2006): An

anticipated increase in volatility would lead to a decline in stock prices for higher future returns.
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and Kuan (2011), the global identification assumption may fail in nonlinear models when instruments

are chosen in an arbitrary way to induce unconditional moments even if it holds for conditional

moments. We demonstrate this point with an example of an affine volatility model and choose an

instrument that guarantees identification by following Carrasco et al. (2007) and Hsu and Kuan

(2011).

Carrasco and Florens (2000, 2014) and Carrasco et al. (2007) promote GMM with a continuum

of moments (C-GMM) in order to exploit the full information by showing that C-GMM can attain

MLE efficiency asymptotically. In this paper, we use GMM with a discrete albeit infinite subset

of moment conditions (D-GMM). This has less computational burden than C-GMM. Also there is

no efficiency loss when a large number of moments is exploited. D-GMM and C-GMM achieve the

same asymptotic efficiency when moment conditions are based on characteristic functions.

Another practical issue is that the latent volatility factor is unobservable but we instead observe

a series of realized variance. By inverting the ARMA model of realized variance, we approximate

the latent AR volatility with a finite series of realized variances. This allows us to treat a realized

variance process with an ARMA representation as an approximated AR process (of higher order

than the latent volatility factor), which is convenient for inference although it makes the model

locally misspecified.

We incorporate the information contained in options data for estimation. They play a role in

both identifying the risk prices and choosing the regularization parameter6 for the construction of

the weighting matrix in GMM.

The rest of the paper is organized as follows. Section 2 sets up a HEAVY-SV model while complet-

ing HEAVY models for the purpose of option pricing. Section 3 provides the risk neutral dynamics

of returns and volatility and an option pricing formula. Section 4 discusses GMM estimation with a

large number of moment conditions. Section 5 provides the empirical analysis with the observations

of realized variance and delivers the option pricing performance of the model developed in this paper.

Section 6 concludes. All figures and proofs are relegated to the appendix.

2 Completing a HEAVY model for the purpose of option

pricing

2.1 HEAVY-SV model

Following Shephard and Sheppard (2010), our analysis will be based on daily financial returns

r1, r2, ..., rT

6Due to the singularity of the sample covariance matrix of moment conditions, we adopt the regularization method
proposed by Carrasco and Florens (2000). See section 4.2 for more detail.
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and the corresponding sequence of daily realized variances

RV1, RV2, ..., RVT .

For sake of notational convenience, the daily returns will be seen as daily continuously com-

pounded rates of returns on some index St in excess of the risk free rate rf,t in the period [t, t +

1] :

rt+1 = log (St+1/St)− rf,t.

Note that RVt+1 is typically computed from intraday data on the index Sτ , τ ∈ [t, t+ 1] by sum-

ming squared increments of log(S). The focus of interest of Shephard and Sheppard (2010) was to

propose a predictive model of volatility “out of the intellectual insights of the ARCH literature” but

offering to “bolster them with high-frequency information”. For this purpose, their HEAVY model

(see their equations (3)/(4)) was a bivariate GARCH-type model, specifying two dynamic linear

equations about the conditional expectation of realized variance and the conditional variance of re-

turns given high frequency information Ft available at time t. They actually interpret the conditional

variance ht = V ar[rt+1 |Ft] as a “close-to-close” conditional variance while the conditional expecta-

tion of RVt+1, µt = E[RVt+1 |Ft] can be interpreted as an “open-to-close” conditional variance of

returns.

2.1.1 Model specification for µt = E[RVt+1 |Ft]

Shephard and Sheppard (2010) write down a GARCH(1,1) type equation:

µt = ωR + αRRVt + βRµt−1. (2.1)

By considering conditional expectation given Ft−1 on both sides of the equation, we immediately

deduce some AR(1) dynamics for µt = E[RVt+1 |Ft]:

µt = ωR + (αR + βR)µt−1 + ηt, E[ηt |Ft−1] = 0. (2.2)

However, it is important to note that model (2.1) implies a quite constrained AR(1) in (2.2)

since the innovation process ηt of µt is a linear function of observed RVt. To put it differently, (2.1)

implies that µt is a deterministic function of current and past realized variances RVτ , τ ≤ t . In

the same way that Meddahi and Renault (2004) have pointed out that, within the general class

of Stochastic Volatility models with AR(1) dynamics for the conditional variance, GARCH(1,1) is

a tightly constrained subclass (because it allows only for one dimension of uncertainty), we can

similarly put forward a general AR(1) model for µt = E[RVt+1 |Ft]. This means that it encompasses

the particular model (2.1) but allows more generally for two sources of uncertainty, one in the
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innovation ηt of the AR(1) process µt, and another in the difference between future realized variance

and its current expectation . In other words, the innovation process ηt of µt is not necessarily a

function of observed RVt. We end up with the following specification:

RVt+1 = µt + νt+1, E[νt+1 |Ft] = 0

µt = ωR + γRµt−1 + ηt, E[ηt |Ft−1] = 0.

It is well known that this specification implies ARMA(1, 1) dynamics for RVt+1 :

RVt+1 − νt+1 = ωR + γR (RVt − νt) + ηt

⇒ RVt+1 − γRRVt = ωR − γRνt + ηt + νt+1,

E[−γRνt + ηt + νt+1 |Ft−1] = 0.

2.1.2 Model specification for ht = V ar[rt+1 |Ft]

As extensively discussed in Andersen, Bollerslev, Diebold and Labys (2003) (see their corollary

1 on page 586), if one thinks that the price process is a continuous time arbitrage-free squared

integrable process, random feedback effects from the intraday evolution of the system to the instan-

taneous mean can be neglected. Thus, realized variance should be an unbiased estimator of the

returns variance conditional on past information:

V ar[rt+1 |Ft] = E[RVt+1 |Ft] . (2.3)

However, due to several kinds of friction including overnight effects, some authors (see e.g. Brown-

lees and Gallo, 2010) have proposed more generally to link the conditional variance of returns to an

affine transform of the predicted realized variance:

ht = ξ + κµt. (2.4)

It is worth knowing that, when Brownlees and Gallo (2010) test for significance of deviations from

the null hypothesis ξ = 0 and/or κ = 1,they do not find compelling evidence against the simple

model (2.3). For the purpose of empirical work, we will basically discuss normalizing assumptions

allowing us to use the simplified version (2.3) of (2.4). Shephard and Sheppard (2010) use the more

complicated model:

ht = ω + αRVt + βht−1.

However, they acknowledge that “although these models are distinct, they have quite a lot of
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common thinking in their structure”. Basically, the role of their “momentum parameter β” will be

to compensate for the fact that they use the raw measure RVt instead of its smoothed version µt.

Note that we arguably need even less to introduce the raw measure RVt in the equation for ht that

we have allowed for richer dynamics than Shephard and Sheppard (2010) for the smoothed realized

variance µt. For us, it is of the SV type, that is endowed with an autonomous source of uncertainty.

We will show later in section 2.3.2 how µt is defined in terms of SV factors. Note that by (2.4), the

conditional variance ht will be AR(1) like µt, with the same persistence coefficient γR .

2.2 Affine specification for SV factor

For the purpose of option pricing, we will need a parametric model for the SV latent factor. This

factor, denoted by σ2
t , will be an AR(1) process linked to the AR(1) processes µt = ht defined above

by a deterministic affine function. It is only for sake of direct interpretation of the parameters that

it is more convenient to specify a driving factor σ2
t common to both variance processes µt and ht

rather than the equivalent way of viewing one of these two processes as the driving factor. We use

the general framework of compound autoregressive processes (CAR) put forward by Darolles et al.

(2006) to describe the dynamics of σ2
t . This framework is particularly well suited for option pricing

since it characterizes the probability distribution through a conditional Laplace transform that is

exponentially affine with respect to past state variables, and as such, provides a discrete time analog

of the affine processes considered by Duffie et al. (2000). Hence we assume that:

E[exp
(
−uσ2

t+1

) ∣∣σ2
t

]
= exp

(
−a(u)σ2

t − b(u)
)

for some deterministic functions a(.) and b(.) defined for all complex numbers u ∈ C. Then, the

conditional expectation and variance can be computed as:

E[σ2
t+1

∣∣σ2
t

]
= a′(0)σ2

t + b′(0)

V ar[σ2
t+1

∣∣σ2
t

]
= −a′′(0)σ2

t − b′′(0).

Therefore, the computation of these two conditional moments involves the value of four parameters
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expected to fulfill the following inequality restrictions

0 ≤ ρ = a′(0) < 1 (2.5)

c = − a
′′(0)

2a′(0)
> 0

δ = −2
a′(0)b′(0)

a′′(0)
> 0

ω = −4
b′′(0)[a′(0)]2

[a′′(0)]2
> 0

leading to the following affine model

E[σ2
t+1

∣∣σ2
t

]
= ρσ2

t + δc

V ar[σ2
t+1

∣∣σ2
t

]
= 2ρcσ2

t + ωc2.

Khrapov and Renault (2016) have shown that the continuous time limit of this model is the affine

model:

dσ2
t = κ(σ̄2 − σ2

t )dt+
√
ν + ησ2

t dWt,

where the four continuous time parameters (κ, σ̄2, ν, η) are known one-to-one functions of the four

discrete time parameters (ρ, δ, ω, c). In particular, one gets the square root process of Feller (1951) by

imposing ν = 0 , which is tantamount to δ = ω. The discrete time parametric model corresponding to

the square root process is actually the so-called AutoRegressive-Gamma process (ARG(1)) proposed

by Gourieroux and Jasiak (2006). In addition to the constraint δ = ω, it is characterized by the

following parametric specification consistent with (2.5):

a(u) =
ρu

1 + cu
, b(u) = δ log (1 + cu) .

2.3 A bivariate CAR model for returns and SV factor

2.3.1 General framework

In order to define the joint probability distribution of the stochastic process (rt, σ
2
t ), t = 1, ..., T, we

specify the conditional distribution of (rt+1, σ
2
t+1) given It =

{
(rτ , σ

2
τ ), τ ≤ t

}
through the following

conditional Laplace transform:

E[exp
(
−uσ2

t+1

)
|It] = exp

(
−a(u)σ2

t − b(u)
)
,∀u ∈ C

E[exp (−vrt+1)
∣∣It, σ2

t+1

]
= exp

(
−α(v)σ2

t+1 − β(v)σ2
t − γ(v)

)
,∀v ∈ C.
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These formulas define a bivariate CAR(1), constrained by the two following maintained hypothe-

ses:

(A1) The returns process rt does not Granger cause the SV factor process.

(A2) Given the path of of the SV factor process σ2
t , the consecutive returns are serially indepen-

dent.

It is shown in Renault (1997) that the conjunction of conditions (A1) and (A2) is necessary and

sufficient for the natural homogeneity (of degree one) property of the option pricing formula with

respect to the pair (S,K) of underlying stock price and strike price. This homogeneity property,

shared with Black and Scholes pricing, ensures that Black-Scholes implied volatilities depend only

on the moneyness. This is in line with a common tradition of representing the volatility smile.

We will actually assume that the above conditional Laplace transforms are not modified when

the information set It is augmented by the past of all relevant high frequency information leading

to the information set Ft defined in subsection 2.1. Then,

E[exp
(
−uσ2

t+1

)
|Ft] = exp

(
−a(u)σ2

t − b(u)
)
,∀u ∈ C (2.6)

E[exp (−vrt+1) |Fσt ] = exp
(
−α(v)σ2

t+1 − β(v)σ2
t − γ(v)

)
,∀v ∈ C,

where

Fσt = Ft ∪
{
σ2
t+1

}
.

In particular,

E[rt+1 |Fσt ] = α′(0)σ2
t+1 + β′(0)σ2

t + γ′(0) (2.7)

V ar[rt+1 |Fσt ] = −α′′(0)σ2
t+1 − β′′(0)σ2

t − γ′′(0).

Note that, following the terminology of Darolles et al. (2006), the two equations (2.6) define a

constrained bivariate CAR(1) model

E[exp
(
−uσ2

t+1 − vrt+1

)
|Ft] = exp

{
−l(u, v)σ2

t − g(u, v)
}
,

with the constraints

l(u, v) = a[u+ α(v)] + β(v)

g(u, v) = b[u+ α(v)] + γ(v).
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2.3.2 HEAVY-CAR model

From (2.7), we see that the conditional variance of returns V ar[rt+1 |Ft] involves four parameters

in addition to the SV factor parameters defined in (2.5):

α′(0) = ψ < 0

−α′′(0) = 1− φ2 > 0

e =
β′′(0)

ρ (1− φ2)
, f =

γ′′(0)

δc (1− φ2)

(2.8)

The constraints that ψ and φ must fulfill will be discussed shortly. We obtain the conditional

variance as an affine function of the SV factor σ2
t :

V ar[rt+1 |Ft] = ψ2V ar[σ2
t+1

∣∣σ2
t

]
+ (1− φ2)

{
E[σ2

t+1

∣∣σ2
t

]
− eρσ2

t − fδc
}

= ψ2
{

2ρcσ2
t + ωc2

}
+ (1− φ2)

{
ρσ2

t + δc− eρσ2
t − fδc

}
=

[
2cψ2 + (1− e)(1− φ2)

]
ρσ2

t + c[ψ2ωc+ (1− f)(1− φ2)δ]

The HEAVY relationship in (2.4) will then be fulfilled if and only E[RVt+1 |Ft] is also an affine

function of the SV factor σ2
t , which in turns amounts to assuming that the realized variance is a

linear transformation of the SV factor as follows

RVt+1 = Aσ2
t+1 −Bσ2

t −D, (2.9)

leading to

E[RVt+1 |Ft] = A[ρσ2
t + δc]−Bσ2

t −D

= [Aρ−B]σ2
t + [Aδc−D]

and

V ar[RVt+1 |Ft] = 2A2ρcσ2
t +A2ωc2

Note that the affine transformation in (2.9) implies that RVt+1 is an ARMA(1, 1) process, which

is consistent with the general HEAVY model discussed above, while the SV factor σ2
t is AR(1). Since

the SV factor is latent, it takes some identification restrictions to identify all parameters. Imposing

the natural condition (2.3) provides two equations about the three parameters A,B,D :

Aρ−B = ρ
[
2cψ2 + (1− e)(1− φ2)

]
Aδc−D = c[ψ2ωc+ (1− f)(1− φ2)δ].
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However, since the SV factor is clearly identified only up to a scale factor, we can impose the

normalization condition A = 1 and then conclude:

RVt+1 = σ2
t+1 −Bσ2

t −D

B = −ρ
[
2cψ2 + (1− e)(1− φ2)− 1

]
D = −c

[
ψ2ωc+ (1− f)(1− φ2)δ − δ

]
.

(2.10)

2.4 Leverage effect

The normalization condition allows us to characterize the leverage effect through the correlation

coefficient

Lt = Corr[rt+1, σ
2
t+1 |Ft] = Corr[rt+1, RVt+1 |Ft] .

However,

Cov[rt+1, σ
2
t+1 |Ft] = Cov[E[rt+1 |Fσt ] , σ2

t+1 |Ft]

= Cov[ψσ2
t+1, σ

2
t+1 |Ft] = ψV ar[RVt+1 |Ft]

so that

Lt = ψ

[
V ar[RVt+1 |Ft]
V ar[rt+1 |Ft]

]1/2

= ψ

[
V ar[RVt+1 |Ft]
E[RVt+1 |Ft]

]1/2

.

It is common to assume that the leverage effect is a time-invariant correlation coefficient. In

our setting, this amounts to assuming that the ratio of V ar[RVt+1 |Ft] and E[RVt+1 |Ft] is time-

invariant. Our empirical study confirms that this assumption is sensible (see figure 1). We thus

choose to maintain it, that is to assume that

V ar[RVt+1 |Ft]
E[RVt+1 |Ft]

=
2ρc

ρ−B
=

ωc2

δc−D
,

that is
V ar[RVt+1 |Ft]
E[RVt+1 |Ft]

=
2c

2cψ2 + (1− e)(1− φ2)
=

ωc

ψ2ωc+ (1− f)(1− φ2)δ

In other words, we have shown the following proposition.

Proposition 1

The leverage effect Lt is a time-invariant constant L if and only if

1− f =
ω

2δ
(1− e),
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in which case,

L = ψ

[
2c

2cψ2 + (1− e)(1− φ2)

]1/2

.

3 Risk neutral HEAVY-CAR model and option pricing

3.1 Structure-preserving change of measure

Following Khrapov and Renault (2016) (see also Bertholon, Monfort and Pegoraro, 2008), we

will define a risk-neutral probability distribution of a bivariate process of returns and volatility that

belongs to the same family of constrained bivariate CAR(1) :

E∗[exp
(
−uσ2

t+1 − vrt+1

)
|Ft] = exp

{
−l∗(u, v)σ2

t − g∗(u, v)
}

= exp(rf,t)E[Mt,t+1(ς) exp
(
−uσ2

t+1 − vrt+1

)
|Ft] ,

where E∗ [·] denotes an expectation under a risk-neutral distribution, with

l∗(u, v) = a∗[u+ α∗(v)] + β∗(v)

g∗(u, v) = b∗[u+ α∗(v)] + γ∗(v)

for some functions a∗(.), b∗(.), α∗(.), β∗(.), γ∗(.) to be characterized below. Here, Mt,t+1(ς) is an

exponential affine pricing kernel:

Mt,t+1(ς) = exp(−rf,t) exp
{
m0(ς) +m1(ς)σ2

t − ς1σ2
t+1 − ς2rt+1

}
,

where

(i) ς1 and ς2 are the two preference parameters corresponding to the two sources of risk. The

parameter ς1 is expected to be non-positive and characterizes the price of volatility risk while ς2 is

expected to be non-negative and characterizes the price of equity risk.

(ii) The functions m0(ς) and m1(ς), with ς = (ς1, ς2), are defined in order to match the following

no-arbitrage condition

E
[
exp

{
m0(ς) +m1(ς)σ2

t − ς1σ2
t+1 − ς2rt+1

}
|Ft
]

= 1

12



which, by the law of iterated expectations, implies

m0(ς) = γ(ς2) + b [α(ς2) + ς1] = g(ς1, ς2)

m1(ς) = β(ς2) + a [α(ς2) + ς1] = l(ς1, ς2).
(3.1)

The risk neutral dynamics defined by functions a∗(·), b∗(·), α∗(·), β∗(·), and γ∗(·) are fully known

when the historical dynamics and the risk price parameters ς1 and ς2 are known. Following Khrapov

and Renault (2016), it is easy to check the following:

α∗(v) = α(ς2 + v)− α(ς2)

β∗(v) = β(ς2 + v)− β(ς2)

γ∗(v) = γ(ς2 + v)− γ(ς2),

and

a∗(u) = a [u+ ς1 + α(ς2)]− a [ς1 + α(ς2)]

b∗(u) = b [u+ ς1 + α(ς2)]− b [ς1 + α(ς2)] .

3.2 Identification of prices of risk

The following no-arbitrage condition contains the identifying information brought by observing

underlying asset returns data:

E [Mt,t+1(ς) exp (rt+1) |Ft] = 1.

This can be rewritten as

E
[
exp

{
−ς1σ2

t+1 − (ς2 − 1)rt+1

}
|Ft
]

= exp (rf,t) exp
{
−m0(ς)−m1(ς)σ2

t

}
with m0(ς) and m1(ς) defined in (3.1). This leads us to the following two equations about ς1 and ς2

by the law of iterative expectations7:

β(ς2 − 1) + a [α(ς2 − 1) + ς1] = β(ς2) + a [α(ς2) + ς1]

γ(ς2 − 1) + b [α(ς2 − 1) + ς1] = γ(ς2) + b [α(ς2) + ς1] .
(3.2)

7We treat exp
(
−rf,t

)
= 1 since rf,t is the daily risk-free rate at time t.
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One sufficient (not necessary) condition for the above equation (3.2) to hold is

α(ς2) = α(ς2 − 1), β(ς2) = β(ς2 − 1), γ(ς2) = γ(ς2 − 1) (3.3)

Note that this identification scheme leaves the volatility risk price ς1 completely unidentified from

the observations of stock price. However, this scheme does not accommodate a non-zero leverage

effect. In order to see this point, consider α(·), β(·), and γ(·) that are well-approximated by their

second order Taylor expansions in a neighborhood of zero8. Then

α(ς2)− α(ς2 − 1) ≈ α′(0) + α′′(0)

(
ς2 −

1

2

)
= ψ − (1− φ2)

(
ς2 −

1

2

)
and thus,

α(ς2) = α(ς2 − 1) ⇔ ψ = (1− φ2)

(
ς2 −

1

2

)
. (3.4)

We will now argue that this assumption on ψ is unacceptable when there is a non-zero leverage

effect. To see that, we note that ψ measures the correlation between an update of the returns

forecast and a shock in volatility, which follows directly from the below equation:

E [rt+1|Fσt ]− E [rt+1|Ft] = ψ
{
σ2
t+1 − E

[
σ2
t+1|Ft

]}
.

As discussed in Bollerslev et al. (2006), this correlation consists of two different economic phenomena

that are impossible to disentangle in discrete time:

i) The volatility feedback effect,

ii) The leverage effect.

The importance of the former effect is directly drawn by the size of the equity risk price ς2,

while the latter should be proportional to a leverage effect parameter. It turns out that φ, which

by equations (2.7) and (2.8) characterizes the share of variance of returns that is explained by

current volatility9, should be interpreted as a genuine leverage effect parameter. Recall that from

Proposition 1 we get

L = ψ

[
2c

2cψ2 + (1− e)(1− φ2)

]1/2

.

8α(·), β(·) and γ(·) are quadratic if rt+1 given Fσt is normally distributed.
9Recall that

V ar [rt+1|Fσt ] = (1− φ2)σ2
t+1 − β′′(0)σ2

t − γ′′(0).
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Those two quantities (φ and L) are equal when

ψ = φ

(
1− e

2c

)1/2

. (3.5)

We want to maintain this interpretation of φ as a leverage effect while understanding that ψ measures

both a leverage effect and a volatility feedback effect. This leads us to consider the aggregation

formula also used in Khrapov and Renault (2016):

ψ = φ

(
1− e

2c

)1/2

+ (1− φ2)

(
ς2 −

1

2

)
(3.6)

so that ψ is rather an approximation of (3.5) with a small component attributable to the volatility

feedback effect that takes the risk premium effect and Jensen effect into account. This parameteri-

zation of ψ will be maintained throughout this paper.

Thus, when φ 6= 0 (non-zero leverage effect), the assumption on ψ in (3.4) is clearly unacceptable

and the equalities in (3.3) cannot be fulfilled. This motivates a different identification approach:

identifying the volatility risk price ς1 from the observations of stock prices.

See that (3.2) is equivalent to

β(ς2 − 1)− β(ς2) = a [α(ς2) + ς1]− a [α(ς2 − 1) + ς1]

γ(ς2 − 1)− γ(ς2) = b [α(ς2) + ς1]− b [α(ς2 − 1) + ς1] .

From the risk neutral dynamics given in the previous subsection, we can see that this is equivalent

to

β∗(−1) = −a∗(α∗(−1))

γ∗(−1) = −b∗(α∗(−1))
(3.7)

The restrictions (3.7) will be maintained throughout.

However, as noted by some papers (e.g. Bandi and Reno (2015), Khrapov and Renault (2016)),

the identification of volatility risk price from returns data is not strong. We use options data for the

identification of ς1 for the empirical analysis (see section 5.5).

3.3 Risk neutral parameters for ARG(1)-Normal dynamics

The bivariate model of ARG(1) volatility and conditionally Gaussian returns is the leading exam-

ple of this paper. This is an appealing example since the constraint of structure-preserving change

of measure is fulfilled. One thing to note is that this Gaussian assumption does not imply thin tails

15



or symmetry for the marginal and the conditional distribution given Ft of returns.

The risk neutral parameters of this ARG(1)-Normal model are given below in Proposition 2. As

we can see later, this allows us to fully specify the functions β(·) and γ(·) that characterize the

returns dynamics.

Proposition 2

Assume that σ2
t+1 is ARG(1) and rt+1|Fσt is normally distributed with the mean and variance

specified in Section 2. Then σ2
t+1 and rt+1|Fσt are still ARG(1) and normal under the risk neutral

measure with the following risk neutral parameters:

ρ∗ = ρX (ς)−2, δ∗ = δ, c∗ = cX (ς)−1

e∗ = e {X (ς)}2 , f∗ = fX (ς)

and

ψ∗ = ψ − (1− φ2)ς2

φ∗ = φ

(β∗)
′
(0) = β′(0) + eρ(1− φ2)ς2

(γ∗)
′
(0) = γ′(0) + fδc(1− φ2)ς2

where X (ς) = 1 + c [ς1 + α(ς2)].

Note that, as implied by the Girsanov theorem in continuous time models, the leverage parameter

φ is not affected by risk neutralization. By contrast, the volatility feedback effect must be subtracted

from ψ to get ψ∗ leaving us with

ψ∗ = φ

(
1− e

2c

)1/2

− 1

2
(1− φ2),

that is a (rescaled) leverage effect and Jensen effect.

We can now specify the functions β(·) and γ(·) using the results in Proposition 2 and the equations

given in (3.7) with β′(0) and γ′(0) given as follows:

β′(0) = a∗(α∗(−1))− eρ(1− φ2)

(
ς2 −

1

2

)
γ′(0) = b∗(α∗(−1))− fδc(1− φ2)

(
ς2 −

1

2

)
,
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where

α∗(−1) = −ψ∗ − 1

2
(1− φ2) = −φ

(
1− e

2c

)1/2

.

3.4 Option pricing

Given the assumption that returns are conditionally normally distributed, Khrapov and Renault

(2016) propose the following option price formula for a one-period call option:

Ct(xt, φ) = exp(−rf,t)E∗t [max{0, St+1 −K}]

= E∗t
[
BS(Stξt,t+1, (1− φ2)σ2

t+1,K)
]
,

where xt = log(K/St) is the log-moneyness of the option at time t, St and K are the asset and the

strike price, and price adjustment ξt,t+1 is defined by

logξt,t+1 = E∗[rt+1|Iσt ] +
1

2
V ar∗[rt+1|Iσt ]

and BS(·) is the standard Black-Scholes formula.

Note that a multi-period (T ) European call option price at time t is

Ct(xt, T ) = exp

(
−
T−1∑
i=t

rf,i

)
E∗t [max{0, St+T −K}]

= StE
∗
t

[
max

{
0, exp

(
T∑
i=1

rt+i

)
− exp (xt)

}]
,

where xt = log(K/St)−
∑T−1
i=t rf,i. The closed-form expression of Ct(xt, T ) is given in proposition

3 below.

Proposition 3

Assume that volatility σ2
t and returns are bivariate CAR(1) as defined in section 2.3. Also assume

a constant risk-free rate, i.e. rf,t = r, ∀t. Then the price at time t of a European call option with

T maturity is given by

Ct(xt, T ) = StP1(xt, T )−K exp (−rT )P2(xt, T ),
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where

P1(xt, T ) =
1

2
+

1

π

∫ ∞
0

<

{
exp

(
−iuxtf∗t,t+T (iu+ 1)

)
iu

}
du

P2(xt, T ) =
1

2
+

1

π

∫ ∞
0

<

{
exp

(
−iuxtf∗t,t+T (iu)

)
iu

}
du

where f∗t,t+T (·) is the conditional characteristic function of
∑T
i=1 rt+i at time t under the risk neutral

measure given in the appendix B, and <(·) denotes the real part of a complex number.

4 Estimation with Generalized Method of Moments (GMM)

The equations in (2.6) defined in Section 2 provide closed-form conditional moment restrictions

that identify θ = (ρ, δ, c, ω, e, f, φ, ς1, ς2). They imply that the following unconditional moment

restrictions hold:

E
[
A(σ2

t )
[
exp

(
−uσ2

t+1

)
− exp

{
−aθ(u)σ2

t − bθ(u)
}]]

= 0, ∀u ∈ C

E
[
B(σ2

t+1, σ
2
t )
[
exp

(
−ur2

t+1

)
− exp

{
−αθ(u)σ2

t+1 − βθ(u)σ2
t − γθ(u)

}]]
= 0, ∀u ∈ C

where A(σ2
t ) andB(σ2

t+1, σ
2
t ) are some instruments and the functions have a superscript θ to highlight

that they depend on the unknown parameters θ. Note that even with a small set of instruments A(·)
and B(·, ·), the above set of moments may be very rich since it is written for any complex number

u.

4.1 Identification

4.1.1 Possible identification failure

One of the critical assumptions for GMM estimators to be consistent for true parameters is that

the parameters in the conditional moment restrictions are globally identified by the induced uncon-

ditional moment conditions. However, the global identification assumption may fail in nonlinear

models when the instruments are chosen in an arbitrary way because the unconditional moments

implied with the chosen instruments may convey less information than the original conditional mo-

ments (Dominguez and Lobato (2004), Hsu and Kuan (2011)).

The example of ARG(1) model, the leading example of this paper for the volatility factor σ2
t ,

illustrates this idea with a constant instrument.
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Example: ARG(1) model

Assume that the random variable Xt+1, t = 1, 2, · · · , is ARG(1). Recall that when Xt+1 is

ARG(1), we have:

E [exp (−uXt+1)− exp {−a(u)Xt − b(u)} |Xt] = 0, ∀u ∈ C

with

a(u) =
ρu

1 + cu
, b(u) = log(1 + cu).

Let ρ0, δ0, and c0 denote the true values of the parameter ρ, δ, and c, respectively. Consider

unconditional moment restrictions implied by the above conditional moment restrictions with a

constant instrument. Theorem 1 shows that there are many parameter values including the true

ones that satisfy such unconditional moments regardless of the choice of u’s.

Theorem 1

Suppose the observations {Xt}Tt=1 follow ARG(1). Consider the below J number of unconditional

moments:

E [exp (−ujXt+1)− exp {−a(uj)Xt − b(uj)}] = 0, uj ∈ C

for j = 1, 2, · · · , J where J ≥ 3. Then there are infinitely many values of the tuple (ρ, δ, c) such that

these moments are satisfied.

The proof of theorem 1 is given in the appendix B. Figure 2 in the appendix A visualizes a result

with Monte Carlo histograms of GMM estimators with the given unconditional moments for some

choices of equally spaced u’s in [1i, 10i]. Figure 3 shows that using an optimal instrument (Hansen,

1985) would not fix the identification problem. The optimal instrument has the closed-form

D(Xt)
′Ω(Xt)

−1

where D(Xt) is a J × 3 matrix of the Jacobian of the given conditional moments such that the j-th

row of D(Xt) is given as

exp {−a(uj)Xt − b(uj)}
(
∂a(uj)Xt+b(uj)

∂ρ
∂a(uj)Xt+b(uj)

∂δ
∂a(uj)Xt+b(uj)

∂c

)
= exp {−a(uj)Xt − b(uj)}

(
uj

1+cuj
Xt log(1 + cuj) − ρu2

j

(1+cuj)2
Xt +

δuj
1+cuj

)
and Ω(Xt)

−1 is a J×J variance matrix of the given conditional moments such that the (j, s) element
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of Ω(Xt)
−1 is given as

E [{exp (−ujXt+1)− exp {−a(uj)Xt − b(uj)}} {exp (usXt+1)− exp {−a(us)Xt − b(us)}} |Xt]

= exp {−a(uj − us)Xt − b(uj − us)} − exp {− [a(uj) + a(−us)]Xt − [b(uj) + b(−us)]} .

4.1.2 Choice of instrument

Dominguez and Lobato (2004) propose to use a complete set of indicator functions as a continuum

of identifying instruments. Hsu and Kuan (2011) note that there are many different ways to get a

continuum of identifying instruments. Let X be a m-dimensional conditioning variable and consider

G(A(X, τ)) with τ ∈ T ⊂ Cm+1 and A(X, τ) = τ0 +
∑m
j=1Xjτj for some function G. When

G belongs to a class of generically comprehensively revealing (GCR) functions, the continuum of

unconditional moments induced by the instruments G(A(X, τ)) contains the same information as

the initial conditional moment restrictions (Stinchcombe and White, 1998).

Examples of GCR functions include exponential and logistic functions. With the ARG(1) ex-

ample, we will see how global identification is maintained for such induced unconditional mo-

ments.

Example: ARG(1) model

Since the conditional characteristic function of Xt+1 at u is in exponentially affine form, the

simplest GCR function we can use is an exponential function: exp (−vXt). Hsu and Kuan (2011)

suggest that we use a continuum of such instruments (a continuum of v) but we consider both cases

with u = v and u 6= v.

Theorem 2 below shows that (ρ0, δ0, c0) are identified when u 6= v but not identified when u = v.

Also, it implies that for identification purposes, only a finite number of instruments (with a finite

number of v values) is sufficient rather than a whole continuum of them.

Theorem 2

Suppose the observations {Xt}Tt=1 follow ARG(1). Consider the below J number of unconditional

moments:

E [exp (−ujXt) {exp (−ujXt+1)− exp {−a(uj)Xt − b(uj)}}] = 0

for j = 1, 2, · · · , J where J ≥ 3. Then the true parameters (ρ0, δ0, c0) are not jointly identified from

the above moments regardless of the value of J .
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Now consider the below J number of unconditional moments:

E [exp (−vXt) {exp (−ujXt+1)− exp {−a(uj)Xt − b(uj)}}] = 0

where (uj , v)′ ∈ C2 and v 6= uj for all j = 1, 2, · · · , J , J ≥ 3. Then (ρ0, δ0, c0) are jointly identified

from these moments for all J ≥ 3.

The first and second sets of instrument in theorem 2 are the Single Index (SI) and the Double

Index (DI) moment conditions (Carrasco et al., 2007). It has already been mentioned above that

the SI moments are not sufficient for identification since they include the one induced with the

optimal instrument as a particular case. Theorem 2 states that identification is guaranteed with

the DI moments. Figure 4 and 5 present the results of some Monte Carlo experiments about GMM

estimators based on the SI and DI moments, respectively.

4.2 GMM with a large number of moment conditions

LetXt be a Markov process of order 1 with the following conditional characteristic function10:

E [exp (−uXt+1) |Xt] = g(u|Xt, θ
0).

We consider the DI moments so that the moment function for each observation is

ψt(θ) = exp(−vxt) {exp(−uxt+1 − g (u|xt; θ)} ,

where both xt and xt+1 are univariate. Note that this function is defined almost everywhere in a

closed subset of C2 which implies that a continuum of unconditional moments exist. Carrasco and

Florens (2000, 2014) propose a GMM estimation technique using a whole continuum of moments (C-

GMM). In this paper, we consider GMM estimation using a countable number of available moments

where the number of moments increases with the sample size. We dub this ‘D-GMM’ (Discrete

GMM) as a counterpart to C-GMM.

Then the GMM estimator is defined as follows.

Definition of GMM estimator:

θ̂T = argmin
θ∈Θ

ψ̄T (θ)′ŴT ψ̄T (θ) (4.1)

10We assume Markov of order 1 for simplicity. This can be easily generalized to any higher order (see the application
in section 5).
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where ψ̄T (θ) = 1
T

∑T
t=1 ψt,T (θ). Let J1,T and J2,T denote the dimension of u and v, respectively.

Then ψt,T (θ) is a JT = J1,T × J2,T vector that has the moment function defined on different values

of v and u, and ŴT is a sample-based weighting matrix.

Let ΩT denotes the variance matrix of the moments:

ΩT = E
[
ψt,T (θ0)ψt,T (θ0)′

]
.

As noted by Carrasco and Florens (2000) and Carrasco et al. (2007), the minimum eigenvalue of

the optimal weighting matrix (Ω−1
T ) converges to 0 as we refine the grids of u since the neighboring

moments become closely correlated with each other.

In order to address this problem, we consider the Tikhonov method of regularization suggested

by Carrasco and Florens (2000). That is, we choose α > 0 and let WT = (Ω2
T + αIJT )−1ΩT where

IJ is a J × J identity matrix for all J ∈ N. By letting α = αT → 0 as T →∞, WT may be a good

proxy of Ω−1
T . ŴT is then the sample analogue of WT defined as follows.

Definition of the weighting matrix:

ŴT = (Ω̂2
T + αT IJT )−1Ω̂T , (4.2)

where Ω̂T is the sample analogue of ΩT and may depend on consistent preliminary parameter

estimates, θ̃T .

The practical use of this weighting matrix will require the choices of the tuning parameters αT

and JT . However, D-GMM is simple to implement (it is a standard two-step GMM estimator) and

computationally less expensive than the C-GMM estimator as the number of moment conditions,

JT , is usually required to diverge at a much slower rate than the sample size. Also the smoothing

parameter αT allows us to relax the rather restrictive assumption that the minimum eigenvalue of

the variance matrix of the moments is bounded away from 0 for any JT and still implement efficient

GMM estimation (αT → 0 as T →∞).

Assumption 1

Let ρ(Yt, u, θ) = ρt(u, θ) = exp(−uXt+1)− g(u|Xt; θ) for a given u. Then

E [ρt(u, θ)|Xt] = 0 ⇔ θ = θ0 ,∀u ∈ C.

Assumption 2

1. θ0 ∈ int(B) and B is compact.
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2. sup
θ∈B

E
[
‖ρ(y, u, θ)‖2 |Xt

]
is bounded for all u ∈ C.

3. For all θ ∈ B, there exists δ(y) such that ‖ρ(y, u, θ) − ρ(y, u, θ0)‖ ≤ δ(y)‖θ − θ0‖ and

E
[
δ(y)2|X

]
<∞.

Assumption 3

1. g(u|X, θ) is twice continuously differentiable in a neighborhood N of θ0.

2. sup
θ∈B

E

[∥∥∥∂g(u|x,θ)∂θ′

∥∥∥2
]
<∞ and sup

θ∈B
E

[∥∥∥∂2g(um|x,θ)
∂θθ′

∥∥∥2
]
<∞ for each m = 1, 2, · · · ,MT .

3. Let D(X) = ∂g(u|X,θ0)
∂θ′ . Then E [D(X)′D(X)] is positive definite.

The above assumptions are assumption 3 and 4 in Donald et al. (2003) that are standard condi-

tions imposed for consistency and asymptotic normality. Assumption 1 is the condition for θ0 to be

identified (for conditional restrictions). Assumption 2 imposes a bounded second conditional moment

and Lipschitz condition for uniform convergence. Part (3) of Assumption 3 is a local identification

condition required for asymptotic normality. Part (1) and the condition on the first derivative of

g in Part (2) are standard smoothness conditions. The assumption of twice differentiability of g in

Part (2) is stronger than is usually assumed due to the growing number of moments.

For the results in theorem 3 and 4, we assume that the dimension of ρ(y, u, θ) is finite and fixed

meaning that J1,T = J1 < ∞ but let J2,T → ∞ as T → ∞. Theorem 3 and 4 below show that

then the GMM estimator with ŴT defined above as the weighting matrix is consistent and attains

Chamberlain’s (1987) semiparametric efficiency bound. Let θ̂T denotes such GMM estimator.

The GMM model we study here is a specific example of the models considered in Donald et al.

(2003):

E [ρ(Y, θ)|X] = 0 ⇔ θ = θ0.

The series of instruments is denoted as, with J = JT ,

qJ(x) = (qJ1 (x), qJ2 (x), · · · , qJJ (x))

and the unconditional moment functions are

ψt,T (θ) = ρ(yt, θ)⊗ qJ(xt).

Donald et al. (2003) assume that ρ is finite dimensional and Σ(z) = E
[
ρ(y, θ0)ρ(y, θ0)′|x

]
and

E
[
qJ(x)qJ(x)′

]
have the eigenvalues bounded away from zero. However, these assumptions can be

unrealistic when infinite dimensionality is involved, as in the example in this paper. We now relax

the latter assumption and allow that λmin
(
E
[
qJ(x)qJ(x)′

])
→ 0.

We show by a slight extension of the proofs of theorem 5.3 and 5.4 in Donald et al. (2003) that the
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GMM estimator θ̂T defined in (4.1) is consistent and attains Chamberlain’s (1987) semiparametric

efficiency bound.

Theorem 3 (Consistency)

Suppose Assumption 1, 2, and 3 hold. Assume sup
x∈X

∥∥qJ(x)
∥∥ =
√
JT . Also assume that αT → 0

and J2
T /Tα

2
T → 0 as T →∞. Then

θ̂T
p→ θ0.

Theorem 4 (Efficiency bound)

Assume that the conditions for Theorem 1 are satisfied and
∥∥∥θ̃T − θ0

∥∥∥ = Op(T
−1/2) where θ̃T is

a preliminary estimator that enters the weighting matrix. Then

√
T (θ̂T − θ0)

d→ N (0, V ),

where

V −1 = E
[
D(X)′Σ(X)−1D(X)

]
D(X) = E

[
∂ρ(Y, θ0)

∂θ′

∣∣∣∣X] .
The choice of the instrument in this paper exp(−v′Xt), v ∈ CL guarantees the identification of θ0

from the unconditional moment conditions when a continuum of v is used (or JT →∞). Then, with

assumption 1, 2, and 3, lemma 2.1 of Donald et al. (2003) holds. Also, ‖exp(−v′Xt)‖ is bounded

(by 1) so the condition sup
x∈X

∥∥qJ(x)
∥∥ ≤ √JT holds. Therefore, the GMM estimator defined in (4.1)

with the weighting matrix ŴT defined in (4.2) is consistent and attains semiparametric efficiency

bound for a finite dimensional ρ(u, θ).

Now let θ̂T be defined as in (4.1) with both J1,T → ∞ and J2,T → ∞. Then corollary 1 below

shows that this GMM estimator attains MLE efficiency when we have conditional moments based

on characteristic functions. C-GMM also attains MLE efficiency (Carrasco et al., 2007) and thus,

D-GMM and C-GMM have the same limit distribution.

Corollary 1

Suppose Assumption 1, 2, and 3 hold. Suppose that the entries of u = (u1, u2, · · · , uJ1,T )′ are

equally spaced (i.e. ui− ui−1 = (uJ1,T − u1)/(J1,T − 1)) on the interval [−R,R] ∗ 1i where R ∈ R++
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such that J1,T →∞ and R/(J1,T − 1)→∞ as T →∞. Then

√
T (θ̂T − θ0)

d→ N (0, I(θ0)−1)

as both J1,T and J2,T diverge to infinity such that J2
T /Tα

2
T → 0 as T → ∞, where I(θ0) is the

Fisher information matrix.

5 Estimation and Empirics with Realized Variance

In this section, we present an empirical application of of the model developed in section 2 applying

the results of section 4 for some part (section 5.3). We implement a two-step estimation that the

parameters characterizing volatility dynamics are estimated in the first step. The first step uses

the observations of realized variance only that is shown to be ARMA(1,1) and thus, is not Markov.

However, as section 5.3 shows, we treat realized variance as an AR(H + 1) with some H ≥ 1, which

allows us to see the dynamics of realized variance as an application of the setup in section 4: realized

variance is CAR(H + 1) and an infinitely many number of conditional moment restrictions based

on conditional characteristic functions is available. We use the DI moment conditions in order to

ensure identification. This AR(H+1) approximation of realized variance generates a misspecification

error. However, we assume that this error is close to zero and does not have a significant effect on

the estimation. This assumption is supported by the overidentification test performed in section

5.3.

5.1 Data

The dataset was obtained from Oxford-Man Institute11 and consists of the daily log returns and

realized volatilities of the S&P 500 over the period from January 2000 to June 2016. The sample

size is 4,121. Variable rt denotes the daily log returns in excess of the risk-free rate, which is proxied

by the yield on a 30-day treasury bill12. The realized variance process {RVt} is computed from

5-minute intraday returns.

5.2 ARG(1)-Normal model

The bivariate CAR model of returns and volatility that we use for the empirical analysis is

the ARG(1)-Normal model. The volatility σ2
t+1 is ARG(1) and the functional forms of a(u) and

11Oxford-Man Institutes realized library, http://realized.oxford-man.ox.ac.uk
12This rate is obtained from http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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b(u) are given in section 4. Returns are assumed to be normally distributed conditional on the

contemporaneous and past volatility, i.e. rt+1|Fσt is normal. As a reminder, the conditional mean

and variance of returns are as follows:

E [rt+1|Fσt ] = µt+1 = ψσ2
t+1 + β′(0)σ2

t + γ′(0)

V ar [rt+1|Fσt ] = Σt+1 = (1− φ2)RVt+1,

where

ψ = φ

(
1− e

2c

)1/2

+ (1− φ2)

(
ς2 −

1

2

)
β′(0) = a∗ [α∗(−1)]− eρ(1− φ2)

(
ς2 −

1

2

)
γ′(0) = b∗ [α∗(−1)]− fδc(1− φ2)

(
ς2 −

1

2

)
.

As shown in proposition 3, the risk neutral dynamics remain the same as the historical dynamics

with the risk neutral parameters given in the proposition. This model has 4 volatility parameters

θσ = (ρ, δ, c, e)′ and 3 returns parameters θr = (φ, ς1, ς2)′ giving us in total 7 parameters to estimate.

We estimate θ = (θ′σ, θ
′
r)
′ using a two-step estimation procedure. we first estimate θσ from the

historical data of realized variance only. Then, treating θσ as given by its estimate, we estimate θr

from the observations of returns and realized variance.

5.3 GMM estimation of volatility dynamics with realized variance

The ARG(1) volatility σ2
t+1 is unobservable. What we observe is realized variance RVt+1 con-

structed from high-frequency data that we have defined as

RVt+1 = σ2
t+1 − eρσ2

t − fδc, t = 1, 2, · · · , T − 1.

This suggests that the series of realized variances is informative about the path of the volatility

factor σ2
t+1. In fact, it is easy to see that the unobservable volatility factor can be represented by an

affine form of the infinite series of the contemporaneous and past observable volatility factor:

σ2
t+1 =

∞∑
k=0

(eρ)
k

(RVt+1−k + fδc) . (5.1)

Then, by assuming |eρ| < 1, σ2
t+1 can be approximated a finite series of observations of realized

variance such that for some H <∞,
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Approximated volatility:

σ2
t+1 ≈

[
H∑
k=0

(eρ)
k
RVt+1−k

]
+

fδc

1− eρ
. (5.2)

Using the above approximation of the unobservable volatility factor, we have an approximation to

the conditional characteristic functions of realized variance as if it were CAR(H + 1). To see this,

recall that we have the following:

E
[
exp

(
−uσ2

t+1

)
|Ft
]

= exp
{
−a(u)σ2

t − b(u)
}
, u ∈ C.

Then plugging the approximation of σ2
t+1 and σ2

t given in (5.2) leads us to the following conditional

characteristic function of RV.

Approximated conditional characteristic function of RV:

E [exp (−uRVt+1) |Ft] ≈ exp
{
−ã(u)′RV t − b̃(u)

}
, u ∈ C (5.3)

where RV t = (RVt, RVt−1, · · · , RVt−H)′, ã(u) that is a (H + 1)× 1 vector with

ãi(u) = (eρ)i−1 [a(u)− eρu]

as its i-th element and

b̃(u) = b(u) +
fδc

1− eρ
[a(u)− u] .

Note that this is a misspecified model of realized variance since realized variance is not Markov and

does not have a closed-form conditional characteristic function. However, the misspecification is

local when letting H = HT diverge as T →∞.

We estimate θσ using D-GMM with the approximate conditional moments given in (5.3). The

discussion in section 4 suggests that for each u we should construct the unconditional moments with

the DI instrument exp
(
−v′σ̃2

t

)
with v ∈ CH+1. However, using the following instrument

Zt = exp {−v1RVt − v2RVt−1} , (v1, v2)′ ∈ C2 (5.4)

is sufficient for identification since the i+ 1-th element of ã(u), denoted as ãi+1(u), is eρãi(u) for all

i = 1, 2, · · · , H.
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Unconditional GMM moment restrictions:

E [ψt(u, θσ)] = E

[<(Zt {exp (−uRVt+1)− exp
(
−ã(u)′RV t − b̃(u)

)})
=
(
Zt

{
exp (−uRVt+1)− exp

(
−ã(u)′RV t − b̃(u)

)})] = 0, u ∈ C (5.5)

where < [·] and = [·] denote the real and the imaginary part of a complex number, respectively.

We use 5 equally-spaced u, v1, and v2 points on [1i, 10i]. This generates J = 2× 5× 5× 5 = 250

moment conditions. The GMM estimator is obtained by minimizing the objective function given in

(4.1) with ŴT given in (4.2) for a choice of αT . The preliminary estimates are obtained with an

identity weighting matrix.

We understand that, for empirical analysis, we have a finite sample size and have to choose a

finite H. We apply the asymptotic results derived in section 4 pretending that the misspecification

error is zero. In order to see whether this assumption is reasonable, we perform an overidentification

test with the moment conditions in (5.5). Since we use a large number of moment conditions, we

use the test statistic proposed by Carrasco and Florens (2000):

τT =

√
TQ̂T,αT (θ̂σ)− p̂T,αT√

q̂T,αT
,

where Q̂T,αT (·) is the GMM objective function given in (4.1) with a chosen αT and θ̂σ is the GMM

estimator minimizing Q̂T,αT (·). p̂T,αT and q̂T,αT are defined as follows:

p̂T,αT =

J∑
j=1

λ̂2
j

λ̂2
j + αT

, q̂T,αT = 2

J∑
j=1

λ̂4
j(

λ̂2
j + αT

)2 ,

where λ̂j is the j-th eigenvalue of Ω̂T defined in (4.2). Carrasco and Florens (2000) show that , as

T →∞,

τT
d→ N (0, 1)

as long as αT does not decrease to 0 too fast. The overidentification test is not rejected when

αT ≥ 0.04 is used at 5% significance level which supports our assumption of zero misspecification

error. Figure 6 shows that |τT | < 1.96 for all αT ≥ 0.04.

5.4 MLE estimation of returns dynamics

Let θ̂σ = (ρ̂, δ̂, ĉ, ê)′ denote the D-GMM estimate of θσ. Once we obtain the GMM estimates

of the volatility parameters, we construct the estimates of the unobservable volatility factor σ2
t+1
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as

σ̂2
t+1 =

H+1∑
l=0

(êρ̂)
l
RVt+1−l +

f̂ δ̂ĉ

1− êρ̂
.

The returns parameters to estimate are φ, ς1, and ς2. The volatility risk premium ς1 is priced and

we will treat it as given (see next subsection). We then estimate the returns parameters φ and ς2

using the series of the estimates of σ2
t+1 and the volatility parameter estimates by MLE for a given

ς1. By the assumption of conditional normality of returns, the conditional likelihood of returns at

time t+ 1 is defined as

l(φ, ς2; rt+1, σ̂
2
t+1, σ̂

2
t , θ̂σ, ς1) =

1√
2πΣ̂t+1

exp

{
− 1

2Σ̂t+1

(rt+1 − µ̂t+1)
2

}
,

where Σ̂t+1 and µ̂t+1 are estimates of Σt+1 and µt+1 with σ̂2
t+1 and θ̂σ. Then the MLE estimates φ̂

and ς̂2 are obtained by maximizing

LR(φ̂, ς̂2) =

T−1∑
t=1

l(φ, ς2; rt+1, σ̂
2
t+1, σ̂

2
t , θ̂σ, ς1).

5.5 Estimation with options data

One thing to note is that the volatility risk parameter ς1 is weakly identified (e.g. Bandi and Reno

(2015), Khrapov and Renault (2016)). This point is supported empirically. When the volatility risk

premium is not identified from the returns and volatility data, options data can be used to price it

(e.g. Corsi et al., 2013).

The options data can play another role, that is to provide a criterion for choosing the regularization

parameter αT
13. We use IVRMSE put forward by Renault (1997) for the volatility risk premium

and αT :

IV RMSE =

√√√√ 1

N

N∑
i=1

(
IV histi − IV modi (ς1, αT )

)2
,

where IV histi and IV modi denote the i-th observation of historical implied volatility and the implied

volatility generated by the model14, respectively.

Another choice parameter is H, the number of lags to be included in the estimation. However, the

estimates seem stable for all H ≥ 10 (see table 1 for cases with H = 5, 10, 15, 20, 30 with αT = 0.1

and ς1 = −10). We use H = 10 for the rest of the empirical analysis.

13Another approach for choosing the regularization parameter is to minimize the estimation error such as mean
squared error (MSE). However deriving the estimation error is difficult in nonlinear models and there are no sound
criteria for choosing αT .

14Options prices are computed using the option pricing formula given in proposition 3.
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Table 1: Estimates of the parameters of ARG(1)-Normal with various H

param. H = 5 H = 10 H = 15 H = 20 H = 30

ρ 0.9274 0.9357 0.9358 0.9364 0.9364
(0.0534) (0.0535) (0.0534) (0.0534) (0.0532)

δ 0.6299 0.6403 0.6365 0.6327 0.6293
(0.1991) (0.2109) (0.2099) (0.2102) (0.2077)

c 1.86e-5 1.67e-5 1.67e-5 1.67e-5 1.68e-5
(6.49e-6) (6.50e-6) (6.52e-6) (6.55e-6) (6.56e-6)

e 0.3454 0.3396 0.3394 0.3396 0.3394
(0.0313) (0.0312) (0.0311) (0.0311)

Persistence 0.9274 0.9357 0.9358 0.9364 0.9364

φ -0.1682 -0.1515 -0.1512 -0.1506 -0.1514
(0.0131) (0.0123) (0.0123) (0.123) (0.0123)

ς2 0.4708 1.0861 1.4700 1.4673 1.4953
(1.2485) (1.2503) (1.2518) (1.2535) (1.2547)

ς1 -10 -10 -10 -10 -10

* The standard errors are given in parentheses.
* αT = 0.1
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Table 2: Estimates of the parameters

param. ARG(1)-Normal1 ARG(1)-Normal2 ARV

ρ 0.9632 0.9895
(0.0377) (0.0229)

δ 0.6469 0.9552
(0.2385) (0.6286)

c 1.13e-5 3.75e-06
(4.73e-6) (2.69e-6)

e 0.4013 0.6206
(0.0204) (0.0148)

α2 4.99e-6
(2.07e-7)

β2 4.76e-5
(0.0369)

γ2 438.59
(14.19)

ω2 4.98e-6

σ 1.00e-5
(1.00e-5)

ρ 0.1597
(0.0275)

Persistence 0.9632 0.9895 0.9595
φ -0.1340 -0.1

(0.012) (0.008)
ς2 0.1458

(1.2904)
ς1 -0.5

χ(ς) 1 1.003

λ2 0.0540
(0.0405)

γ∗2 443.16

X -4.57

IVRMSE 4.7240 4.1959 4.6056

* The standard errors are given in parentheses.
* H = 10 for ARG(1)-Normal models.
* αT = 0.01 and ς1 = −0.5 for ARG(1)-Normal1 model.
* αT = 0.0083 for ARG(1)-Normal2 model.
* Persistence level of ARV model is computed as β2 + α2γ

2
2 .

* ω2 is computed as E
[
hRVt

] (
1− β2 − α2γ

2
2

)
−α2 where the unconditional mean E

[
hRVt

]
is the sample mean of realized variance.
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We choose αT and ς1 that jointly minimize the IVRMSE. Since there is a continuum of αT that

could produce the same results, we choose αT from a small grid on [0.0001, 1]. The computed values

are αT = 0.01 and ς1 = −0.5. With this choice of αT , the volatility parameters are estimated.

Then given those volatility parameters and ς1, the returns parameters are estimated. The results

are presented in table 2. The first column shows the parameter estimates of the ARG(1)-Normal

model with H = 10. The leverage effect, φ, is estimated to be around -0.13.

The second column displays the estimate of χ(ς) that is determined jointly by ς1 and ς2. When

the option pricing formula given in proposition 3 is applied to the ARG(1)-Normal example, an

option price is a function of χ(ς). The estimates of φ do not seem to be much affected by the values

of ς1 and, using this fact, we estimate χ(ς) by minimizing IVRMSE for a given value of φ that is

estimated from the returns data. The IVRMSE is minimized for αT = 0.0083 with the leverage

effect around φ = −0.1. This correlation coefficient estimate is similar to the value reported in

Christoffersen et al. (2014).

Note that we implement a two-step estimation (plugging in the estimates from returns data

to options data for option pricing) in this paper to simplify the optimization problem but this

is inefficient. We can obtain an efficient estimation either by using the iterative method by Fan,

Pastorello, and Renault (2015) or the efficient two-step method by Frazier and Renault (2016). Given

that the IVRMSE decreases significantly when χ(ς) is chosen to minimize the IVRMSE directly using

options data, a two-step method the uses the information in returns and options simultaneously is

expected to decrease option pricing errors.

5.6 Competitor model

The HEAVY-SV model is a discrete-time option pricing model. Thus, the natural competitors are

a class of GARCH-type option pricing models. We consider here the ARV model by Christoffersen

et al. (2014). It is a GARCH-type option pricing model where only the realized variance component

plays a role in the variance dynamic of returns15. The ARV model assumes the following dynamic

model of daily returns:

rt+1 =

(
λ2 −

1

2

)
hRVt +

√
hRVt ε1,t+1,

15The ARV model is a special type of the GARV model (Christoffersen et al. (2014)) where the variance dynamic
of returns depends both on realized variance and returns. Christoffersen et al. (2014) show that the GARV model
outperforms the ARV model in terms of option pricing. But we use the ARV model for comparison since only realized
variance is used for the variance of returns in the HEAVY-SV model.
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where hRVt = E [RVt+1|Ft], and ε1,t+1 is a standard normal return shock. It also assumes the

following affine structure of hRVt

hRVt+1 = ω2 + β2h
RV
t + α2

(
ε2,t+1 − γ2

√
hRVt

)2

,

where ε1,t+1 and ε2,t+1 follow a bivariate standard normal distribution with correlation ρ. Also,

RVt+1 = hRVt + σ

[(
ε2,t+1 − γ2

√
hRVt

)2

−
(
1 + γ2

2h
RV
t

)]
.

This model is estimated using quasi-maximum likelihood (QMLE) techniques. From the observa-

tions of returns and realized variance, the moments used for the estimation in addition to the first

moment of realized variance are:

E [rt+1|Ft] =

(
λ2 −

1

2

)
hRVt

V ar [rt+1|Ft] = hRVt

V ar [RVt+1|Ft] = 2σ2
(
1 + 2γ2

2h
RV
t

)
Cov [rt+1, RVt+1|Ft] = −2ργ2σh

RV
t .

We use the log of the bivariate normal distribution of returns and realized variance given in Christof-

fersen et al. (2014).

The estimation result is given in the third column of table 2. ω1 is estimated using the uncondi-

tional variance formula16:

ω2 = E
[
hRVt

] (
1− β2 − α2γ

2
2

)
− α2.

where we first set E
[
hRVt

]
= 1

T

∑T
t=1RVt.

It shows a high level of volatility persistence, 0.9595, as in the HEAVY-SV model. In the third

column, the risk neutral γ2, denoted by γ∗2 , is estimated from minimizing IVRMSE given other

parameter estimates from the historical data of returns17. The price of risk of volatility, X , is then

deduced from

γ∗2 = γ2 −X .

16Christoffersen et al. (2014) estimate the unconditional mean of realized variance E
[
hRVt

]
jointly with other

parameters.
17We use a modification of the matlab code downloaded from http://christoffersen.com/cen to compute option

prices for the ARV model.
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5.7 Option pricing performance

In order see option pricing performance, we use European options written on the S&P500 index.

The data were downloaded from Optionmetrics18 and the observations range from January 3, 2000

to January 4, 2012. Following Barone-Adesi, Engle, and Mancini (2008) and Corsi et al. (2013), the

options with time to maturity19 less than 10 days or more than 360 days are dropped and we only

consider the options for Wednesday to ensure that we use the liquid contracts. Also, the observations

with option premiums less than $0.05 and with an implied volatility of more than 70% are discarded.

Moreover, we only consider call options. The same analysis can be done for put options as well. The

total number of observations is 23,378.

We categorize options according to their time to maturity and moneyness. Following Khrapov

and Renault (2016), we use log(K/St) as a measure of moneyness where K and St denote a strike

price and a price of the underlying asset at time t.

We estimate the prices of each option for given K, St and time to maturity following the steps

described above for both ARG(1)-Normal with H = 10 and ARV models. In order to analyze

the option pricing performances of each model, we use Root Mean Square Error on option prices

(RMSEP ) and on the percentage implied volatility (IVRMSE):

RMSEP =

√√√√ N∑
i=1

(
Phisti − Pmodi

)2
N

,

where N is the number of observations, Phisti and Pmodi are the historical price and the model

estimated price of the i-th option divided by the underlying price, respectively. The results are

presented in table 3.

The first and second columns of table 3 present RMSEP and IVRMSE of each returns-volatility

model. The first row shows the results of the ARG(1)-Normal model with H = 10 and αT = 0.0083.

The second row shows the same results excluding the observations between 2008 and 2009 which

is the period of the recent recession. As figure 7 presents, volatility during this period dominates

the graph. The third and fourth rows present the option pricing errors of the ARV model. The

observations during the recent recession are excluded for the fourth row. For both models, the option

pricing errors increase during the recent recession when volatility level was exceptionally high. The

ARG(1)-Normal model outperforms ARV model in terms of both RMSEP and IVRMSE.

Table 4 shows the option pricing performances of the ARG(1)-Normal example and the ARV

model for different time periods. ARG(1)-Normal2 stands for the same case as appeared in table

2 and 3. Note that the early 2000s is the period of high volatility while the mid 2000s is the low

volatility period (see figure 7). We see that the option pricing performs well for both models during

18We use zero-coupon yield curve and the index dividend yield provided by Optionmetrics in the pricing procedure.
19Calendar days
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Table 3: Option pricing performances

Models RMSEP IV RMSE

ARG(1)-Normal2 0.009 4.1959

ARG(1)-Normal3 0.0071 3.3065

ARV 0.0104 4.6056

ARV1 0.0093 3.7089

* The observations between 2008 and 2009 are
excluded for the results of ARG(1)-Normal3 and
ARV1.

Table 4: Option pricing performances by dates

Date range 2000 to 2003 2000 to 2004 2000 to 2005 2000 to 2007

ARG(1)-Normal2

RMSEP 0.0071 0.0066 0.0067 0.0068

IVRMSE 3.4092 3.1650 3.1224 3.1197

ARV
RMSEP 0.0058 0.0063 0.0080 0.0098

IVRMSE 3.2661 3.1107 3.3240 3.6116

* For each column, the date range is Jan 2000 to Dec of the last year included.
* ARG(1)-Normal model with H = 10 is used.

both periods of high and low volatility levels before the recent recession in 2008 and 2009.

Table 5 presents some descriptions of the options data and the RMSEP and IVRMSE for each

maturity and moneyness category of the ARG(1)-Normal model and the ARV model. In terms of

IVRMSE, the option pricing performance seems to be better for the option contracts in the long

maturity groups. For different groups of moneyness, the option pricing seems to perform well for

the contracts that are not relatively deep out-of-money (OTM) in terms of both IVRMSE and

RMSEP .
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Table 5: Option pricing performances by maturity and moneyness

By Maturity Less than 60 60 to 120 120 to 150 150 to 180 more than 180

No. of obs 5,125 3,264 3,524 3,617 7,848
Ave. premium 14.7429 21.76 26.01 29.33 37.68
Ave. IV(%) 19.81 18.94 18.72 18.70 18.66

ARG(1)-Normal2

RMSEP 0.0061 0.0075 0.0084 0.0092 0.0112
IVRMSE 4.8084 4.1905 4.0318 3.9622 3.9383

ARV
RMSEP 0.0061 0.0080 0.0092 0.0104 0.0134
IVRMSE 4.8963 4.5356 4.4848 4.4969 4.5410

By Moneyness Less than 3% 3% to 4% 4% to 6% 6% to 10% More than 10%

No. of obs 3,817 3,343 5,821 6,657 3,944
Ave. premium 31.05 30.73 27.38 25.23 24.59
Ave. IV(%) 17.26 17.91 18.08 19.10 22.55

ARG(1)-Normal2

RMSEP 0.008 0.0085 0.0083 0.0091 0.0112
IVRMSE 3.7124 3.8675 3.9009 4.2053 5.1791

ARV
RMSEP 0.0091 0.0092 0.01 0.0108 0.0120
IVRMSE 4.0077 4.1522 4.3028 4.6124 5.7678

* ARG(1)-Normal2 with H = 10.
* Moneyness is log(K/S).
* IV stands for Implied Volatility.
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6 Conclusion

In this paper, we develop a discrete-time affine option pricing model that exploits the information

in high-frequency data. This model has several attractive features such that it is robust to temporal

aggregation, accommodates the leverage effect, and leads to homogeneous of degree one option

pricing. In addition, the historical dynamics are maintained under the risk neutral measures with

the exponentially affine stochastic discount factor which makes the model analytically tractable.

We provide a closed-form option pricing formula that is easy to compute. This model provides the

dynamics of realized variance that nests GARCH-type HEAVY models as a special example.

This model is easy to estimate since conditional characteristic functions exist in closed-form. The

empirical results show a high level of persistence of volatility, as in the HEAVY models. The leverage

effect parameter is estimated to be negative as expected. The empirical results also show that the

model performs relatively well even with the inclusion of the periods of the most recent recession in

2008 and 2009.
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Appendix

Appendix A

Figure 1:
√
V ar [RVt+1|Ft] /E [RVt+1|Ft]

*
√
V ar [RVt+1|Ft] /E [RVt+1|Ft] is calculated by fitting AR(1) realized variance with ARCH(1).

* The first one excludes the 5% largest and 5% smallest values.
* The second one excludes the 10% largest and 5% smallest values.
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Figure 2: Distribution of GMM estimators for ARG(1) volatility model with a constant instrument

* The true values are: (ρ0 = 0.6, δ0 = 1.5, c0 = 0.0106).
* We used 5 equally spaced u’s on [1i, 10i].
* An identity weighting matrix is used.
* 10 randomly generated values were used as initial values for each ρ, δ, and c
* 5000 replications
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Figure 3: Distribution of GMM estimators for ARG(1) volatility model with the optimal instrument

* The true values are: (ρ0 = 0.6, δ0 = 1.5, c0 = 0.0106).
* We used 10 equally spaced u’s on [1i, 10i].
* Due to the singularity of the conditional variance, the Tikhonov regularization method is used with
the regularization parameter equal to 0.01.
* δ is restricted to be between (0, 5] to prevent it from getting too big.
* 10 randomly generated values were used as initial values for each ρ, δ, and c
* 5000 replications
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Figure 4: Distribution of GMM estimators for ARG(1) volatility model with the SI instrument

* The true values are: (ρ0 = 0.6, δ0 = 1.5, c0 = 0.0106).
* We used 5 equally spaced u’s on [1i, 10i].
* An identity weighting matrix is used.
* 10 randomly generated values were used as initial values for each ρ, δ, and c
* 5000 replications
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Figure 5: Distributions of GMM estimators for ARG(1) volatility model with the DI instrument

* The true values are: (ρ0 = 0.6, δ0 = 1.5, c0 = 0.0106).
* We used 5 equally spaced u’s on [1i, 10i].
* 5 equally spaced v’s on [1i, 10i] for the first column.
* v = 2i for the second column.
* An identity weighting matrix is used.
* 10 randomly generated values were used as initial values for each ρ, δ, and c
* 5000 replications
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Figure 6: Overidentification test

Figure 7: Daily realized variance

* We use the data used in Shephard and Sheppard (2010) to plot the RV from Jan 1996 to Dec 1999.
* We use the live data that is updated daily in the realized library to plot the RV from Jan 2000 to
Jun 2012.
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Appendix B

Proof of Proposition 1

Note that

Corr [rt+1, RVt+1|Ft] =
Cov [rt+1, RVt+1|Ft]√

V ar [rt+1|Ft]
√
V ar [RVt+1|Ft]

=
ψV ar

[
σ2
t+1|Ft

]√
V ar [rt+1|Ft]

√
V ar

[
σ2
t+1|Ft

]
= ψ

√
V ar

[
σ2
t+1|Ft

]√
E [RVt+1|Ft]

= ψ

√
2ρcσ2

t + ωc2√
(ρ−B)σ2

t + (δc−D)

Then we get the constant leverage effect if and only if
2ρcσ2

t+ωc2

(ρ−B)σ2
t+(δc−D)

is constant over time. It is

easy to see that this is equivalent to:

2ρc

ρ−B
=

ωc2

δc−D
⇔ 2ρ(δc−D) = ωc(ρ−B)

which is equivalent to:

2(1− f)δ = ω(1− e)

using B and D given in (2.10).

Then the leverage effect L is:

L = ψ

[
2ρc

ρ−B

]1/2

= ψ

[
ωc2

δc−D

]1/2

= ψ

[
2c

2cψ2 + (1− e)(1− φ2)

]1/2

QED

47



Proof of Proposition 2

We know from the subsection 3.2:

α∗(v) = α(ς2 + v)− α(ς2)

β∗(v) = β(ς2 + v)− β(ς2)

γ∗(v) = γ(ς2 + v)− γ(ς2)

and:

a∗(u) = a [u+ ς1 + α(ς2)]− a [ς1 + α(ς2)]

b∗(u) = b [u+ ς1 + α(ς2)]− b [ς1 + α(ς2)]

Since the returns dynamics functions are quadratic:

ψ∗v2 − 1

2
(1− (φ∗)2)v2 = ψv − (1− φ2)ς2v + (1− φ2)v2

= (ψ − (1− φ2)ς2)v + (1− φ2)v2

Then we can deduce that:

ψ∗ = ψ − (1− φ2)ς2

φ∗ = φ

Recall that β′′(0) = eρ(1− φ2) and γ′′(0) = fδc(1− φ2). Then similarly we have:

(β∗)′(0) = β′(0) + eρ(1− φ2)ς2

(eρ)
∗

= e∗ρ∗ = eρ

(γ∗)′(0) = γ′(0) + fδc(1− φ2)ς2

(fδc)
∗

= f∗δ∗c∗ = fδc

We now move to the volatility dynamics. Note that

a∗(u) =
ρ∗u

1 + c∗u
, b∗(u) = δ∗log(1 + c∗u)
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Using the above specification of b∗(u) we have:

δ∗log(1 + c∗u) = δlog(1 + c [u+ ς1 + α(ς2)])− δlog(1 + c [ς1 + α(ς2)])

= δlog

(
1 + c [u+ ς1 + α(ς2)]

1 + c [ς1 + α(ς2)]

)
= δlog

(
1 +

cu

1 + c [ς1 + α(ς2)]

)
so we can deduce that:

δ∗ = δ

c∗ =
c

1 + c [ς1 + α(ς2)]
= cX (ς)−1

Also using the above specification of a∗(u), we have:

ρ∗u

1 + c∗u
=

ρ [u+ ς1 + α(ς2)]

1 + c [u+ ς1 + α(ς2)]
− ρ [ς1 + α(ς2)]

1 + c [ς1 + α(ς2)]

=
ρu

{1 + c [u+ ς1 + α(ς2)]} {1 + c [ς1 + α(ς2)]}

=
ρu

{1 + c [ς1 + α(ς2)]}2
1

1 + c∗u

meaning:

ρ∗ = ρX (ς)−2

From the risk neutral parameter specifications of ρ and c we can now also deduce that:

e∗ = e {X (ς)}2

f∗ = fX (ς)

QED

Conditional characteristic function of
∑T
i=1 rt+i at time t

In this section, we derive the conditional moment generating function of
∑T
i=1 rt+i at time

t,

ft,t+T (u) = E

[
exp

(
u

T∑
i=1

rt+i

)
|Ft

]
, ∀u ∈ C.
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for the leading example that is ARG(1) volatility and conditionally normally distributed returns.

By the law of iterated expectations, we get

ft,t+T (u) = exp
{
−G(u, T )− L(u, T )σ2

t

}
where G(u, T ) and L(u, T ) are defined as follows.

1. L(u, T )

L(u, 1) = l(0,−u) and L(u, i) = l(L(u, i− 1),−u) for all i = 2, 3, · · · , T.

2. G(u, T )

G(u, T ) =

T∑
i=1

G(u, i)

where

G(u, 1) = g(0,−u) and G(u, i) = g(L(u, i− 1),−u) for all i = 2, 3, · · · , T.

Proof of Proposition 3

We start from

Ct(xt, T ) = exp (−rT )E∗t [max{0, St+T −K}]

= StE
∗
t

[
max

{
0, exp

(
T∑
i=1

rt+i

)
− exp (xt)

}]
,

with

xt = log(K/St)− rT.

Then

Ct(xt, T ) = StE
∗
t

[
exp

(
T−t∑
i=1

rt+i

)
1

{
T−t∑
i=1

rt+i > xt

}]
−K exp (−rT )E∗t

[
1

{
T−t∑
i=1

rt+i > xt

}]

Let P ∗t [·] denote the probability under the risk-neutral measure. Note that

E∗t

[
1

{
T−t∑
i=1

rt+i > xt

}]
= P ∗t

[
T−t∑
i=1

rt+i > xt

]
.
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Then by the proof of proposition 3 in Heston and Nandi (2000),

P ∗t

[
T−t∑
i=1

rt+i > xt

]
=

1

2
+

1

π

∫ ∞
0

<
[

exp (−iuxt) f∗t,t+T (iu)

iu

]
du

where f∗t,t+T (iu) = E∗
[
exp

(
iu
∑T
i=1 rt+i

)
|Ft
]
. Also following the proof of proposition 3 in Heston

and Nandi (2000),

E∗t

[
exp

(
T−t∑
i=1

rt+i

)
1

{
T−t∑
i=1

rt+i > xt

}]
=

1

2
+

1

π

∫ ∞
0

<

[
exp (−iuxt) f∗t,t+T (iu+ 1)

iuf∗t,t+1(1)

]
du.

Note that

f∗t,t+1(1) = E∗

[
exp

(
T∑
i=1

rt+i

)
Ft

]

= E∗
[
exp

{
log

(
St+T
St

)
− rT

}
|Ft
]

=
1

St
exp (−rT )E∗ [St+T |Ft] = 1,

using the fact that St = exp (−rT )E∗ [St+T |Ft] under the risk neutral distribution.

QED

Proof of Theorem 1

We will show that θ0 = (ρ0, δ0, c0)′ is not identified from the following equalities.

E
[
exp(−uσ2

t+1)
]

= E
[
exp

{
−a(u1)θσ2

t − b(u1)θ
}]

(7.1)

for any u ∈ C and for any number of u’s used.

Using the fact that the unconditional distribution of σ2
t is gamma with the shape parameter, δ0,

and the scale parameter, c0

1−ρ0 , (7.1) is equivalent to:

(
1 +

c0

1− ρ0
u1

)−δ0
= (1 + cu1)

−δ
{

1 +
c0

1− ρ0

ρu1

1 + cu1

}−δ0
and this is rearranged to:

(1 + cu)
− (δ−δ0)

δ0 =

{
1 +

(c− c0)(1− ρ0) + c0(ρ− ρ0)

1− ρ0 + c0u
u

}
(7.2)

for all u ∈ C.

In order to see how identification fails, we will check that the above equation does not imply
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θ = θ0 even when δ = δ0. When δ = δ0, the equation (7.2) is:

1 =

{
1 +

(c− c0)(1− ρ0) + c0(ρ− ρ0)

1− ρ0 + c0u
u

}
⇔ (c− c0)(1− ρ0) + c0(ρ− ρ0) = 0

We can find multiple combinations of (ρ, c) that are the solutions to the RHS equations including

the true one, (ρ0, c0). Since these (ρ, c) do not depend on u, having a multiple of u’s does not help

and the parameters are unidentified. This result is also shown in figure 1 in the appendix A.

QED

Proof of Theorem 2

Consider the following unconditional moment conditions:

E [exp (−vXt − uXt+1)] = E
[
exp

{
−
[
aθ(u) + v

]
Xt − bθ(u)

}]
(7.3)

for u, v ∈ C. By using the marginal distribution of Xt, (7.3) is equivalent to:

(
1 + c0u

)−δ0 (
1 +

c0

1− ρ0

[
ρ0u

1 + c0u
+ v

])−δ0
= (1 + cu)

−δ
(

1 +
c0

1− ρ0

[
ρu

1 + cu
+ v

])−δ0
(7.4)

Using the Taylor expansion, for each j the LHS is:

(
1 + c0u+

c0

1− ρ0

[
ρ0u+ v + c0uv

])−δ0
=

(
1 +

c0(u+ v) +
(
c0
)2
uv

1− ρ0

)−δ0

since

ρu

1 + cu
= ρu− ρcu2 + ρc2u3 − ρc3u4 + · · ·

= ρu

∞∑
i=1

(−1)
i−1

(cu)
i−1

Case 1: u = v

First, let’s consider the case where u = v for each u ∈ U ∈ C chosen to construct the moments.

Then the LHS is equal to:

(
1 +

2c0u+
(
c0
)2
u2

1− ρ0

)−δ0

Choose δ = 2δ0. Also choose a small c so that c2u2 ≈ 0 and c2u3 ≈ 0. Then the RHS is (approxi-
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mately) equal to:

(
1 + 2cu+

c0

1− ρ0

[
ρu+ u+ 2cu2 + ρcu2 + c2u3

])−δ0
=

(
1 +

(2c− 2cρ0 + c0 + c0ρ)u+ cc0(2 + ρ)u2

1− ρ0

)−δ0
Then LHS equals RHS for all u if

2c− 2cρ0 + c0 + c0ρ = 2c0

cc0(2 + ρ) =
(
c0
)2

We will now show that there exists (ρ, c) 6= (ρ0, c0) such that the above equalities hold. From the

first equality, we have:

ρ = 1 +
2c(ρ0 − 1)

c0

Given that ρ0 < 0, ρ < 1. Also, ρ > 0 if c < c0

2(1−ρ0) which does not violate c being a very small

positive number. Then from the second equality we have:

(
c0
)2

= cc0
(

3 +
2c(ρ0 − 1)

c0

)
⇔ 2c2(1− ρ0)− 3c0c+

(
c0
)2

= 0

Using the quadratic formula, we get the solution for c:

c =
3c0 ±

√
9 (c0)

2 − 8(1− ρ0) (c0)
2

4(1− ρ0)
=

3c0 ± c0
√

9− 8(1− ρ0)

4(1− ρ0)

We know that this solution of c exists since 9−8(1−ρ0) > 9−8 = 1 > 0. If this c satisfies the condition

that c2u2 ≈ 0 and c2u3 ≈ 0, then the unconditional moments (7.3) hold for (ρ, δ, c) 6= (ρ0, δ0, c0) for

all u ∈ U ⊂ C.

Case 2: u 6= v

The RHS of (7.4) is:

(
(1 + cu)

δ/δ0
{

1 +
c0

1− ρ0

[
ρu

1 + cu
+ v

]})−δ0
(7.5)

By the Taylor expansion at around cu = 0, we have:

(1 + cu)
δ/δ0

= 1 +
δ

δ0
cu+

1

2!

δ

δ0

(
δ

δ0
− 1

)
(cu)2 +

1

3!

δ

δ0

(
δ

δ0
− 1

)(
δ

δ0
− 2

)
(cu)3 + · · ·
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which shows that (7.5) will have the terms involving ui, i ≥ 1. Especially, see that:

(1 + cu)δ/δ
0

v = v +
δ

δ0
cuv +

1

2!

δ

δ0

(
δ

δ0
− 1

)
(cu)2v +

1

3!

δ

δ0

(
δ

δ0
− 1

)(
δ

δ0
− 2

)
(cu)3v + · · ·

However, as shown before, the only terms of v that appear in the LHS of (7.4) are v and uv meaning

that δ/δ0 = 1 unless (cu)i = 0 (or very close to 0) for all i ≥ 2.

We first consider the case with δ/δ0 = 1. Then (1 + cu)δ/δ
0

= 1 + cu and (7.5) is:

(
1 + cu+

c0

1− ρ0
[ρu+ (1 + cu)v]

)−δ0
=

(
1 +

(c− cρ0 + c0ρ)u+ c0v + c0cuv

1− ρ0

)−δ0
which is equivalent to:

c− cρ0 + c0ρ = c0

c0c =
(
c0
)2

The only solution is that c and ρ equal to their true values:

c = c0, ρ = ρ0

Now we consider the case with a choice of c such that (cu)i ≈ 0 and u(cu)i ≈ 0 for all i ≥ 2 for

all u. Then (7.5) is (approximately):

(
1 +

δ
δ0 cu(1− ρ0) + c0

[
v + δ

δ0 cuv + ρu+
(
δ
δ0 − 1

)
ρcu2

]
1− ρ0

)−δ0

Then we know δ = δ0 is the only choice for the moments to hold for any u and v. Also,

c(1− ρ0) + c0ρ = c0

cc0 =
(
c0
)2

so that the only solution is:

c = c0, ρ = ρ0

QED
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Proof of Theorem 3

We have ζ(JT ) =
√
JT . Following the notations in Donald et al (2003):

Ω̃T =
1

T

T∑
t=1

ψt,T (θ0)ψt,T (θ0)′, Ω̄T =

T∑
t=1

Σ(xt)⊗ qJ(xt)q
J(xt)

′, ΩT = E
[
ψt,T (θ0)ψt,T (θ0)′

]
where

Σ(xt) = E
[
ρt(u, θ

0)ρt(u, θ
0)′|xt

]
By Lemma A.6 in Donald et al (2003),

∥∥∥Ω̂T − Ω̃T

∥∥∥ = Op

(
JT√
T

)
,
∥∥∥Ω̃T − Ω̄T

∥∥∥ = Op

(
JT√
T

)
,
∥∥Ω̄T − ΩT

∥∥ = Op

(
JT√
T

)
Let

W̃T = (Ω̃2
T + αT IJ)−1Ω̃T , W̄T (Ω̄2

T + αT IJ)−1Ω̄T , WT = (Ω2
T + αT IJ)−1ΩT

Recall that J = JT = J1 × J2,T where J1 is the dimension of ρ(·, θ). Then it suffices to show

that20 ∥∥∥ŴT −WT

∥∥∥ = Op

(
JT /

√
TαT

)
We now proceed to prove this. We know that

W
1/2
T = (Ω2

T + αT IJ)−1/2Ω
1/2
T

Ŵ
1/2
T = (Ω̂2

T + αT IJ)−1/2Ω̂
1/2
T

with WT = W
1/2
T W

1/2
T and ŴT = Ŵ

1/2
T Ŵ

1/2
T . Then

∥∥∥ŴT −WT

∥∥∥ =
∥∥∥W 1/2

T W
1/2
T − Ŵ 1/2

T Ŵ
1/2
T

∥∥∥
≤
∥∥∥(ŴT −WT

)
Ŵ

1/2
T

∥∥∥+
∥∥∥W 1/2

T

(
ŴT −WT

)∥∥∥
≤
∥∥∥ŴT −WT

∥∥∥∥∥∥Ŵ 1/2
T

∥∥∥+
∥∥∥W 1/2

T

∥∥∥∥∥∥ŴT −WT

∥∥∥
20By the same argument given in the proof,

∥∥∥ŴT − W̃T

∥∥∥ = Op
(
JT /
√
TαT

)
,
∥∥∥W̃T − W̄T

∥∥∥ = Op
(
JT /
√
TαT

)
,∥∥W̄T −WT

∥∥ = Op
(
JT /
√
TαT

)
.
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First,

∥∥∥W 1/2
T

∥∥∥2

= λmax

(
(Ω2

T + αT IJ)−1/2Ω
1/2
T (Ω2

T + αT IJ)−1/2Ω
1/2
T

)
≤ λmax

(
(Ω2

T + αT IJ)−1/2
)
λmax

(
Ω

1/2
T (Ω2

T + αT IJ)−1/2Ω
1/2
T

)
≤ 1
√
αT

since λmax

(
Ω

1/2
T (Ω2

T + αT IJ)−1/2Ω
1/2
T

)
≤ 1. Also,

∥∥∥Ŵ 1/2
T −W 1/2

T

∥∥∥ = Op

(
JT√
T

1

α3/4

)

by proof of Theorem 7 in Carrasco and Florens (2000) and
∥∥∥ŴT −WT

∥∥∥ = Op(JT /
√
T ) by Lemma

A.6 in Donald et al (2003). Then

∥∥∥ŴT −WT

∥∥∥ = Op

(
JT√
T

1

αT

)
= op(1)

by the assumption. Then we have the desired result.

QED

Proof of Theorem 4

Let

ĜT =
1

T

T∑
t=1

∂ρ(yt, θ̂T )

∂θ′
⊗ qJ(xt), ḠT =

1

T

T∑
t=1

D(xt)⊗ qJ(xt), GT = E
[
D(x)⊗ qK(x)

]
Since theorem 5.4 in Donald et al (2003) presents the semiparametric efficiency result, we just need

to modify the proof of theorem 5.4 using
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We first need to show
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This holds since
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by
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Then Ĝ′T ŴT ĜT
p→ V −1.

We also need to show

∥∥∥(G̃′T ŴT − Ḡ′T W̄T )ψ̄T (θ0)
∥∥∥ = op(1)

where G̃T = 1
T
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∂θ′ ⊗ qJ(xt). By Donald et al (2003),
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. Then
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Then the result holds by theorem 5.4 of Donald et al (2003).

QED

Proof of Corollary 1

From section 5.2 in Singleton (2001)21,

V −1 = E
[
D(X)′Σ(X)−1D(X)

]
→ I(θ0)−1

as J1,T →∞. Then, by Brockwell and Davis (1991), we may conclude that:

√
T (θ̂T − θ0)

d→ N (0, I(θ0)−1)

QED

21The main idea of the proof in Singleton (2001) is that there exists a continuum (in u) of instrument:

1

2π

∫
exp (−ux)

∂lnfθ0

∂θ
(x|Xt) dx

that leads to the MLE efficiency (Feuerverger and McDunnough, 1981). Then by using the optimal instrument by
Hansen (1985) with an increasing number of u’s, the same efficiency result can be attained.
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